本文目录一览
甘肃省天水市柴家庄金矿床
甘肃省天水市柴家庄金矿床位于甘肃天水市柴家庄东侧,是在该区早古生代火山岩中最早发现的石英脉型金矿床(栾世伟等,1987),矿床规模已达中型。
该矿床系原甘肃省地矿局地质一队二分队于1990年1月在该区进行1∶5万区调时发现的,1991~1994年由甘肃省地矿局地质一队七分队承担普查评价工作。2003年甘肃省第一勘查院又进行了新一轮调查,取得了丰富的资料。
1 成矿地质背景
柴家庄金矿位于西秦岭造山带,北秦岭加里东褶皱带内。北秦岭褶皱带是以华北地块为基底,经元古宙奠基、加里东早期裂陷接受海相火山-碎屑岩沉积,加里东晚期褶皱造山,并经历了华力西期、印支—燕山期强烈改造的复杂带(霍福臣等,1995)。
区域出露地层有古元古界秦岭群、下古生界李子园群、泥盆系和白垩系等。其中,以李子园群基性—中酸性火山岩为主夹正常沉积的中等变质绿片岩系分布最广,金含量高,是区内金矿的主要矿源层。从加里东期至燕山期均有岩浆活动,以印支期—燕山期酸性侵入岩最为发育,且与金成矿关系密切(李永琴等,2006)。
区域断裂构造发育,以SN向区域性大断裂及NW向次级断裂为主要构造线,叠加有NE及近EW向后期断裂,形成了不同期次、不同方向相互交织的错综复杂的断裂构造基本格架。独特的大地构造环境及多期次的构造、岩浆活动,为热液型内生矿产的形成提供了优越的地质条件。
2 矿区地质概况
赋矿地层为下古生界李子园群第三岩性段(甘肃省地矿局,1997),按其岩石组合可分为3 层:下层为浅灰色碎裂状斜长角闪片岩,厚度>134m;中层为石英片岩夹斜长角闪片岩,厚度>257m;上层为斜长角闪片岩夹含石榴石二云石英片岩、大理岩,厚度>210m。各层均为整合接触(图1)(殷先明等,2000)。地层金丰度达58×10-9~65×10-9。其中下部由中基性火山岩变质而形成的斜长角闪片岩金含量高达98×10-9,是重要的矿源层,亦是主要容矿岩石。
矿区总体构造形态为倾向NW的复式单斜构造,其间发育次级小褶曲。断裂构造发育,大体可分为3组:一是NNW向断裂,具有多期次活动特征,表现为早期具压扭性质,晚期具张扭性质,以韧-脆性变形为特征,带内构造片理化作用强烈,热液蚀变发育,并有闪长细晶岩脉及含金石英脉分布,为控矿构造;二是NE向断裂,一般早期为张扭性,晚期具压扭性质,具明显的多期活动性,空间上平行展布,常形成较为密集的挤压带,带内岩石常具多种不同程度的蚀变,并发育有含金石英脉,是区内主要的控矿、容矿构造;三是近EW向断裂,为一组成矿后断裂,对矿体起破坏作用。
印支期柴家庄二长花岗岩体呈不规则港湾状岩株产出,出露面积45km2。属S型浅成相花岗岩,剥蚀较浅。围岩蚀变发育充分,蚀变带宽数十米。岩体金平均含量5.13×10-9,内接触带高达56×10-9,含金石英脉多分布在外接触带2m范围之内。
脉岩发育,石英脉为区内重要的含金脉体,闪长细晶岩脉与含金石英脉密切伴生,在Ⅳ矿带见与金矿化关系密切,蚀变强烈地段构成金矿体。闪长岩脉在LD403,IYM1中可见切穿含金石英脉现象,并多沿近东西向的晚期断裂带填充,对金矿体起破坏作用,花岗伟晶岩脉、闪长玢岩脉、煌斑岩脉与金矿化无明显关系(武汉地质学院,1985)。
图1 柴家庄金矿地质图(附土壤化探异常)
1—下古生界李子园群下岩组上层;2—下古生界李子园群下岩组中层;3—下古生界李子园群下岩组下层;4—二长花岗岩;5—闪长岩脉;6—石英闪长岩脉;7—闪长玢岩脉;8—石英脉;9—矿带;10—断层;11—综合异常
3 矿床地质特征
3.1 矿带及矿体特征
柴家庄金矿已发现金矿化带4条(图1),圈出金矿体11个。
Ⅰ,Ⅱ,Ⅲ金矿化带位于矿区南部,受一组NE向脆性断裂控制,呈NE向平行展布,倾向NW,倾角52°~71°。矿化岩石为单一的碎裂状含金石英脉,多呈单脉状、透镜状产于断裂带内,局部受一组次级断裂面控制而呈多条脉平行产出(图2),具明显的膨大收缩及尖灭再现现象。脉体与围岩界线清晰,二者接触面上常有一层1~5 cm厚的断层泥。近矿围岩多为斜长角闪片岩及具弱的硅化、绿泥石化及碳酸盐化蚀变。
Ⅳ矿带位于矿区北部,受NNW向脆-韧性断裂控制,走向345°~350°,地表倾向NEE,深部倾向SWW,倾角65°~70°。含矿岩石以碎裂状含金石英脉及旁侧的黄铁绢英蚀变岩,局部蚀变闪长细晶岩亦构成金矿体。顶板岩石为碎裂状斜长角闪片岩,底板岩石为闪长细晶岩,夹石为绢云母片岩(图3)。围岩蚀变强烈,有绢云母化、硅化和黄铁矿化等。
金矿体形态以脉状为主,其次为透镜状,主要赋存于Ⅰ,Ⅲ,Ⅳ矿带中,长15~380m,厚0.27~2.70m,控制延深45~125m。金品位3.91×10-6~35.90×10-6,单样最高品位达208.64×10-6,矿床平均品位20.70×10-6。
3.2 含金石英脉特征
石英脉为区内最重要的含金脉体,其生成多受韧性剪切带控制,主要为同构造石英脉,多呈NE向展布。矿区已发现具有一定规模石英脉27条。其中Ⅰ矿带11条,Ⅱ矿带2条,Ⅲ矿带1条,Ⅳ矿带13条。按其特征和含金性大致可分为2类,即乳白色石英脉和烟灰色碎裂状石英脉,前者分布无明显规律,金矿化微弱;后者一般受断裂控制,多构成金矿体。
石英脉型金矿石为该矿床最主要的矿石类型,浅灰—烟灰色石英也是主要的载金矿物之一,石英单矿物分析含金达4.22×10-6。
图2 Ⅰ1 矿体1755m 中段示意图
Past—斜长角闪片岩;1—金矿体及编号;2—石英脉;3—煌斑岩脉;4—实测逆断层
图3 Ⅳ1 矿体1936m 中段示意图
1—斜长角闪片岩;2—闪长细晶岩;3—绢云母岩;4—实测正断层;5—实测逆断层;6—金矿体及编号;7—石英脉型金矿石;8—蚀变岩型金矿石
3.3 矿石特征
矿石自然类型简单,以石英脉型金矿石为主,其次为蚀变岩型金矿石。
3.3.1 矿物成分
矿石中金属矿物主要为黄铁矿、黄铜矿,其次为方铅矿(在人工重砂及IYM1-2坑道中见到),少量闪锌矿、磁铁矿、毒砂、辉铜矿、铜蓝和孔雀石等。脉石矿物以石英为主,其次为绢云母、绿泥石,少量长石、高岭石和方解石等。
1)黄铁矿:浅黄、黄、灰黄色,以半自形—他形晶为主,其次为半自形—自形的立方体晶形,在黄铁矿的裂隙中多充填有黄铜矿、辉铜矿和铜蓝等矿物,少量黄铁矿周围有被氧化成褐铁矿的现象。黄铁矿在矿石中分布不均匀,局部呈团块状、条带状和不规则细脉状。黄铁矿的粒度变化较大,粗细不均。多数大颗粒的黄铁矿有被压碎现象。黄铁矿与金矿物关系密切,紧密伴生,为重要载金矿物。
2)石英:浅灰白、灰、烟灰色,外形不规则,他形粒状集合体。粒径一般在0.4~2mm之间,最大10.5mm。因受后期构造作用而强烈破碎,形成细小的搓碎物,并均已重结晶,在后期次级应力作用下,发生裂纹、裂隙,被晚期金属硫化物和方解石细脉所充填。个别石英有包裹黄铁矿、黄铜矿的现象,与金矿物关系密切。经单矿物分析,含金4.22×10-6,为载金矿物之一。
3)矿石中金矿物成分较为简单,以银金矿为主,次为自然金。金矿物呈金黄色,以角砾状、板片状为主,次为枝杈状,浑圆状、叶片状和毛丝状。粒径0.005~0.18mm,平均0.027mm。其中,<0.037mm的微细粒金占71.84%。金的赋存状态以裂隙金占46.38%、粒间金占43.00%、包裹金仅占10.62%。裂隙金、粒间金主要赋存于黄铁矿、黄铜矿裂隙及粒间,包裹金则多被褐铁矿、黄铜矿及石英包裹。
3.3.2 矿石结构构造
石英脉型矿石具自形、半自形和他形不等粒结构,交代、穿插、溶蚀、包含及碎裂结构常见;蚀变岩型金矿石具鳞片粒状变晶结构;不均匀浸染状、细脉状、团块状及角砾状构造是区内原生矿的主要构造,氧化矿石常见蜂窝状构造。
3.3.3 有益组分含量及变化
成矿主元素Au含量一般1×10-6~50×10-6。最高可达208.64×10-6。其中,石英脉型矿石中金含量较高,一般 >20×10-6,高于100×10-6者亦可常见,而蚀变岩型矿石中金含量一般1×10-6~15×10-6,尚未发现>20×10-6。空间上,随两类矿石的交替出现,Au含量急剧变化,在同类矿石中,金含量则较为稳定,变化系数一般<80%。伴生Ag含量8.12×10-6~26.12×10-6、Cu含量0.22%~0.94%,可综合回收利用,其他元素含量甚低。
3.3.4 成矿期及矿化阶段
柴家庄花岗岩体同位素年龄为198~206 Ma(K-Ar法测定黑云母),成矿作用发生在其后,与矿体密切的北北东向断裂截穿花岗岩体及白垩纪以前的地层,断裂带内多发育多期脉岩。由此推知柴家庄金矿的成矿时代为印支期末—燕山期。
按成矿作用与矿物共生组合及其相互关系,矿区金矿化可分为两期6个阶段。
第一期,变质热液成矿期发生于加里东—华力西期,区域变质热液使金活化迁移形成初步富集的基础上,又叠加了构造热液,使金再次活化、迁移至有利构造部位,以交代方式沉淀成矿,形成了绢云母-石英-黄铁矿-自然金组合。为本区金的第一成矿阶段,形成了蚀变岩型金矿石。
第二期,岩浆热液成矿期发生于印支—燕山期,随着大规模酸性岩浆侵入活动的发生,丰富的岩浆期后热液混合了部分大气水和变质水形成充足的成矿流体,携带大量成矿物质迁移至构造有利部位充填成矿,形成了区内石英脉型富矿石(王友文等,1985)。按矿物共生组合本期可分为5个成矿阶段:
第一成矿阶段为黄铁矿-石英阶段:主要由乳白色石英组成,伴有少量黄铁矿及金矿物。黄铁矿以粗粒立方体自然晶呈浸染状分布。
第二成矿阶段为金-石英-黄铁矿阶段:主要由中粗粒黄铁矿和石英组成。黄铁矿多呈半自形粒状晶体,呈脉状、团块状集合体叠加于前一阶段之上,是本区金的次要成矿阶段。
第三阶段为金-石英-黄铜矿-黄铁矿阶段:主要由中细粒他形晶黄铁矿与烟灰色石英及少量黄铜矿组成。黄铁矿多具压碎结构,与黄铜矿、毒砂、银金矿和自然金共生,是金的主要成矿阶段。主要矿物组合为金-石英-黄铜矿-黄铁矿。
第四成矿阶段为金-石英-多金属硫化物阶段:由细粒灰白色石英、中粗粒方铅矿及少量细粒他形黄铁矿组成,常局部富集并成块状高铅金矿石。在方铅矿团矿中多含有早期细粒黄铁矿及烟灰色石英角砾。
银金矿多呈他形粒状赋存于方铅矿粒间,是金的又一重要成矿阶段(杨根生,2007)。
4 矿床成因
4.1 地球化学特征
4.1.1 区域地球化学特征
据基岩光谱分析(金府实,1994),李子园群主要元素丰度值Ag为0.138×10-6,Pb为20.5×10-6,As为3.97×10-6,Sb为1.06×10-6,Au为2.10×10-9,其中,中基性火山岩金含量平均6.4×10-9,柴家庄花岗岩体金含量5.13×10-9,二者Au丰度高于地壳克拉克值。
4.1.2 矿区地球化学特征
(1)Au元素在矿区地层和岩体中的分布特征
据矿区1∶2000地化剖面(基岩光谱分析)资料李子园群下岩组下层Au的平均丰度为17×10-9,为地壳克拉克值的4倍以上,I矿带位于其中;在下岩组中层,Au平均丰度为58×10-9,是克拉克值的14倍以上,其中赋存有Ⅱ,Ⅲ,Ⅳ矿带;在下岩组上层,Au平均丰度为96×10-9,为地壳克拉克值的24倍,该套地层相对远离各金矿带,目前尚未发现金矿体。
柴家庄岩体Au平均丰度为56×10-9,为地壳克拉克值的14倍。
从上述金的地球化学特征可以看出,矿区柴家庄岩体和李子园群火山岩均经过了金的初步富集,高于其同种元素的区域值,成为Au的高背景带,具备了提供矿源的基础条件。
(2)微量元素在矿体和围岩中的分布特征
1)微量元素分布特征:矿区微量元素分布特征如表1所示。从表中可以看出,各种岩石中微量元素含量基本接近或略高于克拉克值,但在石英脉中却明显富集,其次是构造角砾岩、中基性岩脉和火山岩,尤其是Ag,Cu,Mo等元素,显示了它们与金成矿的相关性。
2)土壤异常特征:矿区土壤测量共圈出综合异常9个,一般由Au,Ag,Cu和Hg等元素组成,浓集中心明显,异常套合较好,具内、中、外三带。Au元素品位一般为36×10-9~80×10-9。异常多为圆形或椭圆形,主要呈北北西向展布,与已知矿带走向吻合,其中AP-4,AP-5和AP-6综合异常与已知矿体对应较好。
表1 柴家庄金矿岩石微量元素含量 w(B)/10-6
注:甘肃地矿局第一实验室光谱分析,1992。
4.1.3 矿体同位素地球化学特征
为进一步研究成矿作用,分别于能代表矿床特征的Ⅰ,Ⅲ,Ⅳ矿带采集了硫同位素(黄铁矿型金矿石)、氢、氧同位素(含金石英脉)样品,测定结果显示了较为清晰的流体成矿信息。
(1)硫同位素
据郑永飞等研究(2000),硫同位素在不同物源中的变化:铁陨石δ34S为0.0‰~0.6‰,在花岗岩中δ34S为-13.4‰~26.7‰,在变质岩中δ34S为-20‰~+20‰,而在海水硫酸盐中δ34S非常稳定,δ34S约为20‰左右,而在沉积岩中硫的丰度比岩浆岩大一个数量级,且变化范围很大。
矿区硫稳定同素样品测定结果如表2所示。从表中可以看出,δ34S变化范围为4.90‰~7.82‰,平均5.90‰,极差3.320‰。δ34S变化区间较窄,且均为正值。其值比幔源δ34S高,而与花岗岩比较接近,显示硫的来源与花岗岩有关。
表2 柴家庄金矿硫同位素测定结果
(2)氧同位素
一般认为,海水δ18O为0‰(变化<±1‰),大气降水δ18O为-54‰~31‰(平均-4‰),变质水δ18O为5‰~25‰,岩浆水δ18O为5‰~7‰,大多数正常花岗质岩石为7‰~13‰,玄武岩δ18O为5.5‰~7.4‰(郑永飞,2000)。
在含金石英脉中共取氧同位素样品 6 件,测定结果如表 3 所示。δ18O 变化范围 9.52‰~11.63‰,平均10.54‰,极差3.11‰,变化范围较小,具热液特征。δ18O值与花岗质岩石较为接近,说明成矿流体的来源与柴家庄花岗岩关系较为密切,同时也有部分大气降水和变质热液的参与。
表3 柴家庄金矿氧稳定同位素测定结果
注:由中国科学院广州新技术研究院分院虞福基分析。
(3)氢同位素
在金矿体中共取氢同位素样品4件,测定结果如表4所示。δD变化范围为-85‰~-99‰。平均值为-91.75%,极差-14%。与表6中所列世界典型矿床中流体的δD值比较,显示出大气降水参与了成矿,同时混有少量的岩浆水和变质水。
表4 柴家庄金矿及岩体中δD 含量表
注:由中国科学院广州新技术研究院分院虞福基分析。
4.2 包裹体特征
于Ⅳ矿带南、北两端各采石英包裹体测温、测盐样一件,前者距岩体较近,包裹体较小(5~11 μm),气液比5.15,形成温度154~218℃,平均181.5℃,盐度2.6%~7.3%,平均6.0%。后者距岩体较远,包体较大(5~20 μm),形成温度(134~200℃,平均165.3℃),盐度3.5%~6.7% 之间,平均5.8%。测温、测盐结果表明成矿与岩体侵入有成因联系。
4.3 矿床成因
综上所述,从δ34S的变化可以看出其值比幔源δ34S高,而与花岗岩比较接近,显示硫的来源与花岗岩有关;δ18O变化范围为9.52‰~11.63‰,其值与花岗质岩石较为接近,说明成矿流体的来源与柴家庄花岗岩体关系较为密切,同时也有部分大气降水和变质热液的参与;从δD值来看,显示出大气降水参与了成矿,同时混有少量的岩浆水和变质水;在图4 上,样点全落在雨水—热液水区间,说明成矿流体是一种混源体;成矿温度和盐度与柴家庄岩体相应值比较接近。综合来看,成矿流体主要来自岩浆热液,其次为大气降水,同时有变质热液等的参与。
图4 柴家庄金矿δD-δ18O 关系图
(据冯益民等,1995)
结合矿床地质特征,即李子园群和柴家庄岩体金的丰度值较高,是矿源层(体);矿床产于岩体热晕波及带内,矿区分布有多期脉岩,说明岩浆活动较为强烈,为成矿提供了热能;虽然地层、区域变质作用、多期构造活动及大气降水等均参与了成矿,但矿床成矿物质及热液主要来自岩浆活动,以岩浆成矿作用为主(段永民,2006)。
张维吉、孙继东(1994)及金府实(1994)在勘查初期对矿床特征进行了初步研究,杜玉良(1999)经过对丹凤群(即李子园群)沉积建造特征及含矿性的研究,认为基性—中酸性火山岩是成矿的必要条件;宋忠宝、冯益民等(1996)通过同位素年代学的研究,认为柴家庄花岗岩体形成年龄(华力西期)早于金成矿期(印支-燕山期),故岩体只能提供部分成矿物质,而不提供热源。段永民(2006)在前人研究成果的基础上,通过对其地球化学特征的分析,认为岩浆热液活动是成矿的主导因素,是诸多控矿因素中最主要的控矿因素。
5 找矿标志及找矿方向
本区岩体接触带和较封闭的矿液循环及沉淀构造环境是成矿的重要条件。区内找矿标志明显,找矿标志及找矿方向主要有以下几个方面。
1)李子园群及分布于其中的印支-燕山期中酸性侵入岩是找矿的区域性标志。
2)岩体外接触带NE、NNW向断裂是找矿的构造标志。
3)含金石英脉露头是最直接的找矿标志,其主要特征是呈烟灰色,具碎裂状、蜂窝状和网格状构造,含金属硫化物。金属硫化物的种类和含量,是矿化富集程度的直接标志,以富含他形细粒黄铁矿及黄铜矿、方铅矿者矿化最佳。
4)围岩蚀变标志:绢云母化、硅化、黄铁矿化、黄铜矿化、方铅矿化与金矿化呈正相关,主要发生于矿体及近矿围岩中,远离矿体则迅速减弱。绿泥石化、碳酸盐化广布于围岩中,但在含矿断裂带表现较强,是热液活动的标志。
5)矿物学标志:矿石的主要组成矿物为石英、黄铁矿和黄铜矿等,均具有指示金矿化的标型特征。
6)以Au为主的Au,Ag,Cu,Pb,As,Hg综合异常是找矿的地球化学标志。异常的规模、强度与金矿化强度明显相关,元素的分带趋势:前缘元素Hg,As,近矿指示元素Au,Ag,Cu,Pb。
7)本区矿床的形成受丹凤群、印支-燕山期酸性侵入岩及断裂构造3种因素控制,找矿的首要方向是上述岩体外接触带0~2km范围内的NE、NNW向断裂发育部位;其次为虽离岩体较远,但NNW向断裂及中酸性脉岩发育地段;在无岩浆活动的丹凤群分布区,亦有可能在蚀变强烈的NNW断裂中赋存有蚀变岩型金矿。
参考文献
甘肃省地质矿产局.1997.甘肃省岩石地层.武汉:中国地质大学出版社
武汉地质学院.1985.岩浆岩岩石学.北京:地质出版社,147~160
何世平,宋忠宝,冯益民.1995.中川与柴家庄岩体周边金矿显微特征及找矿意义.河南地质,13(2)
霍福臣,李永军.1995.西秦岭造山带的建造与地质演化.西安:西北大学出版社
李永琴,赵建群,赵彦.2006.西秦岭金成矿系统分析.甘肃地质,15(1):47~52
栾世伟,陈尚迪,曹殿春,等.1987.金矿床地质及找矿方法.成都:四川科技出版社,47~302
杨根生.2007.甘肃天水柴家庄金矿地质特征与找矿标志.西北地质,(163):36~42
殷先明,等.2000.甘肃岩金矿床地质.兰州:甘肃科学技术出版社,69~177
殷勇,赵彦庆.2006.甘肃西秦岭金矿富集区花岗岩与金成矿作用的关系.甘肃地质,15(1):36~41
于津生,李耀菘.1997.中国同位素地球化学研究.北京:科学出版社
朱志澄,宋鸿林.1991.构造地质学.武汉:中国地质大学出版社,248~246
Li Yongqin,Zhao Jianqun,Zhao Yanqing.2006.Analysis of goldmetallogenetic system in western Qinling.Gansu Geology,15(1):47~52
Yin Yong,Zhao Yanqing.2006.Relationship between granite and goldmineralization in the gold enrichment area of western Qinling,Gansu Province.Gansu Geology,15(1):36~41
(张艳春编写)
中国地质科学院矿产资源研究所
中国地质科学院矿产资源研究所作为中国地质调查局直属的事业单位,既是国家科技创新体系的重要组成部分,又是中央公益性地质调查队伍的主体力量和重要技术支撑。主要开展矿床地质、地球化学、地球物理、成矿规律、成矿预测、矿产勘查新理论新方法、矿产资源调查评价、矿产资源战略和可持续发展研究,以及重大矿产资源科学问题研究等。中国地质学会矿床地质专业委员会、矿物专业委员会挂靠在所,主办学术刊物《矿床地质》。
王瑞江所长在典型示范成果技术委员会验收会上做报告
国内知名专家、院士评估潜力评价典型示范成果
王瑞江所长(中)、张佳文副所长(右二)、毛景文副所长(左二)、王宗起副所长(右一)、邢树文副所长(左一)
2009年矿产资源研究所承担项目200余项,其中国家科技支撑课题12项、国家863课题4项、国家973课题5项、国家自然科学基金项目20项、地质大调查项目38项、深部计划专项项目1项、部危机矿山项目11项、部公益性行业专项项目3项、部百人计划项目3项、各省局地勘项目3项、公司等委托项目28余项等,以及所基本业务费项目和院实验室项目若干项。获国土资源科学技术奖一等奖1项、二等奖2项;发表论文153篇,其中SCI收录23篇,ISTP论文3篇,EI检索2篇,国外一般13篇,国内核心期刊99篇,国内一般13篇,出版专著9部。
全国矿产资源潜力评价新一轮技术培训研讨会
国土资源部地勘司和地调局有关领导亲临验收会
2009年度重要科研成果
全国矿产资源潜力评价:属国土资源大调查重点计划项目,2009年整体工作有序推进,省级工作全面展开并取得实质性进展,基本完成除新疆、西藏、青海、内蒙古、黑龙江5省(区)外的全国各省(区、市)铁矿和铝土矿单矿种资源潜力评价工作(包括与铁、铝潜力评价相关的成矿地质背景、成矿规律、物探、化探、遥感、自然重砂、矿产预测、数据库建设等项工作),及省级基础编图工作(包括1:25万实际材料图和建造构造图、全省/区/市重力、磁测、化探、遥感、自然重砂等基础编图)。煤炭、铜、铅、锌、钨、锑、稀土、金、钾、磷等单矿种资源潜力评价工作正按计划有序推进;全面完成全国典型示范工作,成效显著并及时应用于矿产勘查年度工作安排和“十二五”规划部署研究中;完成技术要求的最后审定和编制,交付正式出版;成功举办全国新一轮技术培训;成功召开了2009年度全国工作会议,进一步加强和推进了项目组织管理和工作进度;开展了自2006年以来省级项目工作进度统计分析,按月及时、全面地掌握了工作进展情况;以开通专门网站和签订宣传合作协议的方式,加强了项目成果的宣传。
全国矿产资源潜力评价2009年度工作会议现场
全国铁、铝单矿种潜力评价成果示范验收会
全国矿产资源利用现状调查项目技术要求培训会
全国矿产资源利用现状调查:该项目是国土资源部开展的矿情三项调查任务之一。项目由中国地质科学院矿产资源研究所承担,全国31个省(区、市)和相关行业部门参加,项目办公室设在矿产资源研究所。本项工作于2007年启动,计划2010年底基本完成任务。
经过两年的努力,本项工作已在全国全面展开。2009年主要进展如下:①按六大区片系统组织了全国技术培训,另应安徽、广东、广西、河南、山西等十多个省(区、市)的要求,有针对性地开展了省级培训,共计培训技术人员5000人次,为本次核查工作奠定了坚实基础;②全面展开了全国矿产资源储量动态监督管理支持系统建设,包括煤炭矿区三维可视化系统开发、矿区资源概略技术经济评价软件开发及试点等;③省级试点及调研工作全面推进。为了发现和解决实际工作中的问题,全国项目组开展了黑龙江鹤岗煤炭矿区储量核查试点、煤炭三维可视化系统试点、湖北及北京单矿种汇总试点、北京评审验收办法细则试点等一系列试点工作,并组织了山西、黑龙江的省级调研,这些工作均取得了良好的指导示范效应;④矿区资源储量核查工作取得阶段性成果。全国计划核查矿区为22589个(含各省自选矿种),已完成核查4838个,完成比例为21%;部规定核查的大中型矿区5175个,已完成核查1196个,完成比例23%。
王瑞江所长(左二)、王登红研究员(右一)在西藏新嘎果铅锌矿区考察
中国成矿体系综合研究:属国土资源大调查项目,项目负责单位为中国地质科学院矿产资源研究所,参加单位有天津地质矿产研究所、长安大学等。主要完成人员:陈毓川、王登红、徐志刚、沈保丰、汤中立、陈郑辉等。该项目在“中国成矿体系与区域成矿评价”项目的基础上,通过对成矿作用和成矿系列的深入研究,充实了成矿系列内容,提升了中国成矿体系和成矿规律的认识;根据新资料,重新划分了全国范围的Ⅰ、Ⅱ、Ⅲ级3个层次的成矿区带,增加了海域成矿区带的划分,首次实现了国土面积的全覆盖;从唯物辩证法的角度提出了“全位成矿—缺位找矿”的必然性和偶然性、一般性和特殊性、现实性与可能性,以揭示成矿规律,指导地质找矿,体现了根据“现实”来预测“可能”的基本思路,对拓展找矿思路具有重要意义;在深入研究各主要地质历史时期成矿体系的地质构造环境等重大成矿基础地质问题的基础上,进一步确立了中国前寒武纪以陆核构造为主的成矿体系、古生代的板块构造成矿体系和中、新生代的大陆成矿体系,充分体现了我国四大成矿体系各自的本质和特点;探索并已初步构建了数字化和系统化的中国成矿体系专家系统,为地质矿产资源勘查和矿产地质基础研究等提供了便捷的查询服务。2010年1月,该项目通过中国地质地调局成果报告评审委员会验收,成绩为优秀。
青藏高原火山沉积硼矿成矿条件与找矿标志研究:属国土资源大调查工作项目,项目主要成员有:郑绵平、齐文、李金锁、陈文西、袁鹤然、刘建华、曹建科、郑元、刘丹阳、李道明等。该项目通过多年深入研究区调查,取得下述主要成果。
发现和确认在青藏高原存在富硼二元结构火山沉积岩系,经K-Ar和SHRIMP测定年龄为21~16Ma。其成矿时代与土耳其安纳托利亚主成硼带相同;首次发现该火山沉积二元结构硼、锂、铯、铷以及砷正异常,且与安纳托利亚火山沉积岩系硼、锂、铯、铷相当,并在火山沉积岩层中发现钠硼解石和硼砂矿物,局部硼矿层已达工业品位;遥感、水化学、岩石矿物等多学科研究充分揭示卡湖地区有广泛的硼、锂(铷铯)地球化学高丰度显示,其正异常面积约近10000km2。通过区域地质和岩石学研究,查明色卡执早中新世火山沉积岩形成地质构造背景。该区与安纳托利亚同处于板块边缘附近,卡湖富硼超钾质火山沉积岩系是在印度板块与欧亚大陆陆陆碰撞期后、地壳东西向伸展背景下的封闭断陷盆地中形成的,硼(锂)物质可能是代表来自深部岩石圈和地幔部分熔融的产物。调查发现现代卡湖产硼砂和钠硼解石的厚度达1m多,发现10个现代盐湖和咸水湖湖水硼或锂达到工业品位,初步估算的B2O3和LiCl资源量分别为830万吨和4.6万吨;指出青藏高原同属中新世早期沉积(五道梁群和查保马组)的可可西里至青藏铁路中段等地,值得进行火山沉积硼矿探索。调查结果表明,西藏卡湖地区火山沉积硼矿化区具备火山沉积硼矿床构造地质、岩石矿物和地球化学的找矿先决条件,具有寻找超大型火山沉积硼矿的潜力。该成果为我国突破超大型火山沉积硼矿的先导性成果,为在青藏高原寻找该类型矿床提供了重要的科学依据。
我国战略性矿产勘查工作运行机制研究:属中国地质调查局地质调查工作项目,主要完成人员有:王瑞江、崔艳合、王文、罗晓玲、孙艳、张新安、李建武、颜世强、刘树臣。项目以科学发展观为指导,深入分析了我国矿产勘查面临的国内外环境和形势;详细阐述了战略性矿产勘查工作的基本内涵、性质定位、主要任务和部署原则等;系统剖析了我国矿产勘查工作管理体制的变迁与特点,对计划经济和社会主义市场经济两个时期我国地质工作体制和运行机制取得的成绩和存在问题等进行了评价;全面收集了世界主要以市场经济体制为主体国家的矿产勘查工作管理制度、运行机制等基本资料,结合我国实际特点,从产业管理体制、矿产勘查投资、矿产勘查主体、矿业权运作等方面进行了对比分析研究,提出构建适合我国社会主义市场经济体制的矿产勘查运行机制的基本要素和下一步改革建议;对我国战略性矿产勘查的市场准入及退出、工作部署、找矿激励、科技引领、主体互动、风险勘查、投资融资、质量监控、勘查利益调配、矿产战略储备、资料公共服务等各环节的运行机制进行了细致地阐述分析;深入探讨了我国战略性矿产勘查中有关公益性地质队伍建设、国家公益性地质工作对商业性矿产勘查的引导和拉动作用,以及“走出去”等若干重大问题。提出的这些认识和建议对推动我国战略性矿产勘查工作具有重要参考意义。
“玢岩”型铁、硫矿床及控矿构造的反射地震探测研究:高分辨率反射地震在探测深度和分辨率方面具有其他方法无法比拟的优势。为试验该方法在探测深部“层状”矿床和控矿构造方面的有效性,吕庆田研究团队在国家危机矿山专项计划项目的支持下,于2008年在安徽庐枞(庐江—枞阳)矿集区的罗河—泥河—大包庄矿区采集了两条10km的高分辨率反射地震剖面。尽管矿区构造十分复杂,但叠加剖面仍然发现了很多反射:白垩纪沉积红盆清楚的反射特征,揭示出红盆具有3层结构,厚度约1200m。从沉积韵律分析,白垩纪以来该地区在伸展构造背景之下伸展速度和沉积环境存在阶段性变化;火山岩层大致呈现3层结构,火山沉积岩层(双庙组、砖桥组)的厚度约800~1000m。火山沉积岩之下有明显的“穹隆形”反射,推断可能存在“鼻状”隆起的侵入体。对照精细建立的地质剖面,罗河矿体、泥河矿体上方存在清晰的反射,与矿体位置基本对应,初步证实利用高分辨率反射地震可以直接探测到矿体;同时也发现,当矿体陡倾,或结构形态复杂、或空间尺寸较小时,对应矿体无反射或呈零乱弱反射。试验结果表明,高分辨率反射地震可以用于探测深部控矿构造,在条件合适情况下,可以探测层状矿体。
罗河、泥河、大包庄矿床地质简图及反射地震剖面位置(S1、S2)
图中蓝色、红色和粉色方框分别代表泥河、罗河和大包庄矿区范围;黑色、蓝色和绿色圆点分别代表泥河、罗河和大包庄矿床钻孔分布
S2偏移剖面的地质构造解释结果
K1sh—双庙组火山岩;Jzh—砖桥组火山岩;Q—第四系沉积;J—推断为早中侏罗碎屑岩沉积(罗岭组或磨山组);T—推断为三叠系灰岩;Ky1、Ky2、Ky3分别代表红盆的三层结构;粗实线为断裂,细虚线为岩性界面;ZK64—剖面经过的钻孔位置、编号及柱状图,钻孔岩性图例如下:
第四系;杨湾组红层沉积;凝灰岩、粉砂岩;(黑云母、辉石)粗安岩;次生石英岩;高岭石岩;正长岩;碱性长石岩; 粗面岩; 磁铁矿、黄铁矿体; (绿泥石化、碱性长石化)膏辉岩;(方沸石)透辉石岩;
加拿大萨斯喀彻温省找钾勘查:属于社会项目,主要完成人有:齐文、郑绵平、闫长明、孙伟、罗晓峰、黄适等。矿产资源研究所与中川国际矿业控股有限公司开展战略合作,在加拿大萨斯喀彻温省钾盐成矿带周缘进行找钾勘查,通过大量地震物探、钻探取心、测试分析和综合地质研究,在KP488区块找到了大型优质钾石盐矿床。该钾矿层赋存于中泥盆统顶部,共有3个钾矿层,埋深1229~1308m,矿层平均厚度19.25m。钻孔控制矿体面积37km2。矿石类型为氯化钾矿,KCl平均品位32.8%。KCl资源量巨大,达50255.85万吨,其中:控制的内蕴经济资源量(332)KCl3330.84万吨,推断内蕴经济资源量(333)KC146925.01万吨。勘查表明,这是一个具有良好开发前景的大型优质钾石盐矿床。
郑绵平院士带队在加拿大考察钻孔岩心
刚从钻孔中取出的钾盐岩心
新疆准噶尔盆地周边斑岩铜矿成矿条件研究:属中国地质调查局地质调查工作项目,报告完成人有:杨富全、闫升好、刘玉琳、周刚、刘德权、王义天、杨建民、宋会侠。该报告将新疆准噶尔斑岩铜矿床成矿时代分为4期,即晚志留世—早泥盆世(427~411Ma),主要分布在东准噶尔琼河坝地区;中泥盆世(378~376Ma),主要分布在准噶尔北缘的卡拉先格尔一带;石炭纪(327~296Ma),主要分布在准噶尔北缘的希勒库都克和西准噶尔的包古图一带;三叠纪,主要见于希勒克特哈腊苏铜矿,叠加在中泥盆世成矿作用中。新疆准噶尔斑岩成矿带体现出从东到西成矿时代逐渐变新的规律,从427~418Ma(铜华岭铜矿)→411Ma(蒙西铜钼矿)→374~378Ma(希勒特克哈腊苏铜矿和玉勒肯哈腊苏铜矿)→327Ma(希勒库都克钼铜矿)→310~296Ma(包古图铜矿)。境外的东西两段均发现了许多大型、超大型矿床,因此,处于中段过渡带的准噶尔也有形成大型、超大型矿床的条件。对包古图大型斑岩铜矿进行了系统研究,建立了包古图斑岩铜矿成岩成矿年代学谱系,探讨了成矿作用。测定了哈腊苏斑岩铜矿成矿时代,对成矿流体性质和来源进行了研究,建立了矿床模型,提出早期成矿作用发生在中泥盆世,与斑岩有关,晚期叠加成矿作用发生在中晚三叠世,与构造—岩浆—热液活动有关。
哈腊苏中型斑岩铜矿区景观
包古图大型斑岩铜矿区景观
岩矿和化石标本标准化整理、整合及共享试点:属科技部、财政部自然科技资源共享平台项目中的子课题,主要完成人员有:张德全、崔艳合、佘宏全、唐绍华、李进文、丰成友、张作衡、白鸽、杨郧城等。项目采集或收集整理了湖北大冶铁矿、江西德兴斑岩铜矿、云南个旧锡矿、山东焦家、新城金矿等43个大中型金属矿床标本共2882件,编写完成了所有43个矿床和2882件岩矿石标本的描述和信息记录工作。标本全部保存于资源所专业展览馆内,每一个岩矿石均建立了相关信息数据资料。可以通过网络查阅了解矿床的位置、用途、资源编号、规模大小、矿床特征、矿石和矿体特征、品位、主要地质图件、分析数据等51项信息内容;同时提供单个岩矿石标本的结构构造特征、矿石照片、提供标本的联系方式等29项具体信息。主要应用网络服务面向社会和地质专业部门提供浏览性服务,为地质科学院研究生教育提供试验教育服务。
2006~2008年岩矿石标本标准化整理矿床分布图
豫西熊耳山地区深部找矿浅析
李俊平1,2 王金亮1,2 李永峰1,2(1.河南省有色地质矿产有限公司;2.河南省有色金属矿产探测工程技术研究中心)
一、成矿地质背景与矿床分布
图1 熊耳山地质与矿床分布简图(据郭保健等,2005)
熊耳山矿集区位于华北地台南缘,其空间范围北东面以三门峡-宜阳-鲁山断裂为界,南西面以播河-马超营断裂、车村断裂为界,北西面为洛宁-卢氏凹陷,包括豫西地区的洛宁、栾川、嵩县大部分地区和卢氏、宜阳县部分地区,东西长大约80km,南北宽25km,面积约2000km2(图1)。大地构造属于华熊隆起的熊耳山断隆区,出露地层主要为晚太古宙太华群变质岩系和上覆中元古代长城系熊耳群火山岩系、官道口群、栾川群。区内断裂构造十分发育,其中最重要的断裂有北西西向的马超营断裂、北东东向洛宁山前断裂、北东向星星阴-七里坪断裂,其中北东向断裂为区内主要控矿断裂。中生代岩浆岩十分发育,具有良好的金银多金属成矿条件。
区内内生金、银矿床主要产于太华群和熊耳群中,官道口群亦发现有金矿化;金银矿床(点)集中分布于燕山期花岗岩体周围和隐伏岩体的顶部,可大致分为两个矿化集中区。东部矿集区环绕花山岩体分布,自西向东依次为上宫-小池沟金矿田、青岗坪-龙潭沟金矿田、瑶沟-老代沟金矿田、祁雨沟-门头沟金钼矿田和木柴关-上观金银矿化区。西部以寨凹隐伏岩体为中心,其南北两侧分别出现铁炉坪-蒿坪沟银铅矿田和康山-太硐沟银铅矿田(图1)。其中最重要的金矿有上宫、虎沟、康山、星星阴、青岗坪、干树凹、祁雨沟等;以银为主的银-铅-金矿有铁炉坪、沙沟、蒿坪沟等,钼矿有雷门沟、鱼池岭等。金矿床类型主要有构造蚀变岩型、石英脉型、隐爆角砾岩型,其中以构造蚀变岩型最为重要。现已探明大-中型金矿14处,大型银铅矿2处,大型钼矿2处,找矿潜力巨大,是秦岭造山带内重要的金银钼多金属矿化集中区。区内代表性大-中型矿床的主要特征见表1。
二、深部找矿可行性分析
新中国成立以来,经过系统的地质找矿工作,该区发现了大量的矿床,随着找矿工作的不断深入,地表露头矿已越来越少,找矿费用日益增长,找矿难度日益增大,新发现矿床数量明显减少,找矿主体对象已由原来的露头矿转向寻找深部隐伏矿为主。
面对矿产资源的严峻形势,国务院于2006年颁布了《关于加强地质工作的决定》,强调要“积极开展重大地质问题科技攻关,突出重点矿种和重点成矿区带的地质问题研究,大力推进成矿理论、找矿方法和勘查开发关键技术的自主创新”;随后又将重点成矿区带矿产资源评价、寻找大型矿产资源的新理论和新方法列为国家中长期(2006~2020年)科学和技术发展规划纲要中的重点领域和优先主题。因此,围绕国家重大决策和战略规划,开展成矿理论和找矿技术的创新研究,发现一批新的矿产资源基地,是一项迫在眉睫的重大任务。
区内矿业发达。20世纪80年代以来,祁雨沟金矿、上宫金矿、沙沟银矿、雷门沟钼矿等矿山企业相继开发投产,矿业已成为地方经济发展的支柱产业。在新形势下,加强老矿山已探明矿体深部及外围的隐伏矿体预测找矿工作已日益显示出其紧迫性和重要性。
(一)从理论上分析
首先,熊耳山地区处于成矿有利地带,具有良好的成矿地质条件,是区带找矿过程中发现的地质、地球物理和地球化学,以及遥感异常的良好叠加部位,而且大多已进行过一些前期地质工作,并有大量已揭露矿体的与成矿有关的各种信息显示,特别是矿山经历了几十年的大规模机械化开采,积累了大量地质信息,解剖并检验了地质勘查阶段对矿床成矿、控制因素和赋存规律的认识,或探到了地质勘查阶段漏掉的矿体,或发现了新类型、新成矿系列的矿床,对已有地质认识产生了这样那样的问题与疑问。老矿山处于有利的成矿地质环境,前期地质勘查的成功经验与失败教训在矿山生产中得到了验证,这些宝贵的认识,为进一步找矿预测奠定了基础,因而对后续找矿工作的进行提供了良好的前提条件。
其次,过去的勘探工作由于受生产技术的局限,基本上都停留在500m以上,因而对大多数老矿山而言,500m以下是深部盲矿体良好的找矿空间,因而老矿山深部的探查应是今后寻找隐伏矿体的一个重点。国内外近代大中型矿床发现的成功经验证明,已知矿山深部与周边是获得找矿成功的最重要区域。世界巨大型矿床的发现绝大多数是在已知的中小型矿床基础上,通过坚持不懈的找矿研究,终获重大突破。
再次,过去的找矿工作多以“相似类比”理论为指导,并且多以一种矿床模型为指导,因而在已知矿体的周边和外围容易漏掉一些与“相似类比”理论不太明显相符的矿体或同一成矿系列中其他类型的矿体,因而老矿山的周边和外围也是今后寻找隐伏矿体的一个重点。
表1 熊耳山矿集区大型矿床主要特征一览表
(二)从技术上分析
随着矿产资源的开发,地质工作程度的提高,对成矿地质规律的认识会不断深入,有利于促进对矿床形成机制和定位机制的客观规律的重新认识,是老矿区新一轮找矿取得突破的前提和基础。各种矿床成因新理论的提出有助于更新观念、拓宽找矿思路,而找矿新思路恰恰是老矿区新一轮找矿取得突破的关键。
各种综合找矿新模型与成矿系列的建立,有助于综合研究矿床成因、成矿规律、主要控矿因素和地、物、化、遥综合找矿标志,借助于GIS系统处理海量数据,筛选最主要的控矿信息,从中挖掘出最优化的信息组合来指导隐伏矿体找矿。综合信息找矿预测目前在隐伏矿体预测中应用最广、效果最好,是老矿区深部找矿取得突破的理论保障。
各种新技术、新方法的出现,克服了常规物、化探方法探测深度不够、抗干扰能力不强等一些弊端,借助于高精度的仪器和分析测试技术能够提取隐伏矿体的微弱深部信息并使之突出显化,是老矿区深部找矿取得突破的技术保障。
三、深部找矿的主要途径
(一)加强地质研究是前提
只有加强资源勘查理论与方法的研究才能有效地指导深部找矿,使发现新类型矿床和新矿种资源成为可能。成矿理论的作用主要在于:①建立正确的找矿思路,指导找矿工作的部署,即到什么地方去寻找什么矿床;②建立理论的成矿模式,指导找矿信息的解释。地学界研究新成果和成矿理论源于包括地质找矿在内的地学实践,反过来又指导地学研究和找矿工作。各种新理论和新方法使地质工作者从不同的角度对矿区的成矿环境、成矿条件、成矿规律进行重新认识,来指导矿山外围找矿和深部找矿工作,进行系统思维,总结新的控矿因素和找矿标志,建立起可操作的矿床组合模式,探索深层次的找矿问题。
对于研究程度很高的矿山及周边地区,运用传统的成矿理论、找矿模式、勘查理论来发现新矿床是十分困难的;所以必须改变传统思维,运用新的甚至是不成熟的成矿理论与勘查模式,结合前人的研究成果,对研究区的地质、物探、化探、遥感等各种资料反复认真研究,并带着求异思维、系统思维、动态观去重新分析成矿地质背景、岩石建造、物质来源等一系列的基础地质资料,在此基础上分析和总结成矿规律,建立成矿模式;最后,采用新的勘查模式与有效找矿方法,对矿区深部进行预测评价。
对于研究程度较低的矿山及周边地区,可以把已有的成矿理论、勘查理论和方法与新的技术方法结合起来,并注重基础地质、成矿物质来源、综合利用矿产资源等方面的研究,发现新矿床的潜力是十分巨大的。主要从以下几个方面着手:
(1)加强基础地质、成矿理论的研究。目前越来越重视从系统的角度去考查整个成矿过程,把成矿物质来源、岩石建造、控矿因素、找矿标志等当成一个有机的整体,既独立研究各部分的机理,又研究各部分的内部联系。
(2)加强各理论的联系。目前,在国内比较盛行的理论有地质异常理论(赵鹏大等,1991,1999)、区域成矿学及成矿系统理论(翟裕生等,1999,2000,2004)、成矿系列理论(陈毓川等,1993,1994,1998;程裕淇等,1979,1983)、综合信息预测技术(王世称等,1995,1999)及多元信息预测技术(朱裕生等,1997)等。在进行矿产资源预测时,应该把各种理论有机地结合为一个整体,而不能孤立地运用它们;既要继承前人的优点,又要突破成规、有所创新,要综合运用系统的思维、求异思维研究成矿理论与勘查理论。
(3)加强应用高新技术。要利用当今世界先进技术和先进经验,特别要加强运用多S技术,研究深部地质体、构造的遥感影像特征、地球物理技术在深部的运用、深部地质体的地球化学特征的反映等;同时也应该加强研究技术方法,寻找有效的技术方法探测深部的地质体和地质构造。
(二)开展深部立体找矿是根本
近年来,老矿区深部找矿效果比较明显,如基于美国著名的卡林金矿带而建立的卡林型金矿成矿模式一直认为卡林型金矿床是“浅而贫的”,可美国地质工作者冲破这种模式的限制,自1986年开展深钻项目,就在卡林金矿带开展深部找矿,结果在深部不断发现大而富的金矿,于550m深处发现了高品位波斯特-贝茨硫化物金矿(金储量311t),以后又连续发现了米克尔(140t)、南米克尔(140t)、北贝茨、西贝茨、派普莱恩(115t)、南派普莱恩(136t)、特阔伊斯里奇(155t)等深部金矿。目前,国外许多大型矿山探采深度都超过1000m,如南非的巴伯顿金矿3800m,南非兰德金矿的采金竖井将加深至4117m,这将是世界最深的矿井;澳大利亚芒特艾萨铜多金属矿2600m,并在3000m深度又发现储量大于300万t的富铜矿床。在俄罗斯,黑色金属矿山平均采矿深度为600m,有色金属矿山平均开采深度为500m,但许多已超过1000m,将来可达到1500~2000m;已探明的1/3以上的铜储量,几乎所有的镍、钴,大部分铝土矿,金刚石、金、优质铁矿及磷矿的开采深度将大于1000m;其他国家的采矿深度:加拿大2000m,美国3000m,印度3500m。而熊耳山地区绝大多数金属矿床的探采深度不足500m,在500~1000m深度范围内开立体找矿,无疑具有重要的现实意义。
矿山深部找矿主要是开展立体找矿,进行三维立体填图,发现同类型矿床和矿种为主;然而矿山深部预测在我国目前尚无系统的勘查理论做指导,也无切实可行的方法,所以十分有必要加强深部预测的理论与方法的研究。
(三)先进的地球化学和地球物理技术是有力的技术保证
深部找矿的主要对象是大埋深和难识别矿床(体),直接找矿信息难于获取,主要靠间接找矿信息进行预测分析。但因间接找矿信息弱、干扰强及其与目标体间强非线性关系等,使得常规的技术往往无法有效地探测到,因此,先进的地球物理和地球化学等技术就显得十分必要。Laznica(1997)统计了全世界140个大型矿床的发现史,采用先进技术发现的占30%,传统找矿技术发现的占24%,凭机会偶然发现的占39%,依地质填图和后续工作发现的占14.5%。但以1965~1995年时段统计,采用先进技术发现的占71%,偶然发现的占14.5%。可见,先进技术在找矿中的作用越来越大,主要原因在于地表和近地表易发现的矿床越来越少。据施俊法等(2005)统计1970年以来全球100个大型和特大型金属矿床的发现资料,发现至少有58%的矿床是在已知矿床周围或深部找到的,3%的矿床是偶然发现的,5%的矿床是通过评价已有资料发现的。由此可以看出矿山深边部存在巨大的找矿潜力,先进技术是发现这些潜在矿床的有力保障。
四、深部找矿的重点方向
熊耳山地区是我国重要的金银钼有色、贵金属成矿带,钼、金、银、铅、锌是优势矿产。该区金矿成矿规律在20世纪80~90年代开展了详细的研究工作,取得了重要成果。随着深部找矿工作的开展,初步揭示了深部还存在金矿体,出现了第二富集段,甚至还出现了其他矿种,如钼矿。因此要加强金矿深部成矿规律研究,以便指导找矿工作。
区内钼矿成矿规律研究工作主要在20世纪80年代进行的,当时勘查发现的钼矿床主要是与晚侏罗世中酸性小斑岩体有关的斑岩-矽卡岩型钼矿,如南泥湖、雷门沟等,因此,侧重研究和总结了该类型钼矿的成矿规律,取得了重要成果。但随着勘查工作的进展和成矿年代学测试方法的改进,初步揭示出该区钼矿大规模成矿作用是多期次的,除有晚侏罗世,还有晚三叠世、早白垩世;矿床类型具多样性,除有与I型花岗斑岩有关的斑岩-矽卡岩型钼矿床外,还有碳酸岩脉型、石英脉型,以及与壳幔混合型花岗岩(基)、铝质A型花岗岩(基)有关的斑岩型钼矿床。成矿构造环境亦多样性,晚三叠世后碰撞环境、晚侏罗世构造体制大转折晚期伸展环境和早白垩世板内伸展环境。
铅锌银矿主要分布于钼金矿床的外围,或与金矿床共伴生,以往的研究工作主要侧重于钼、金矿的研究,而铅锌银矿研究比较薄弱。但是钼金银铅锌矿床往往是同一地质成矿作用的产物,尤其是随着近些年,矿产品的大幅涨价,勘查工作的大量投入,该区铅锌银矿的找矿取得了重要突破。熊耳山地区东部富金、钼,西部富银、铅,反映了该地区成矿期后的差异抬升:东部剥蚀程度较高,而西部剥蚀程度较低。因此,应加强对区域剥蚀程度的研究,将这些矿产作为一个整体加强研究,注意现有矿床深部找矿工作,特别注意加强在剥蚀程度较浅的西部银多金属矿区的深部找矿工作,实现深部找矿的整体突破。
总之,加强该区成矿规律研究,总结区域成矿地质作用、系统研究区内钼、金、铅锌矿床的组合关系(成矿系列)、矿床类型与特征、区域控矿构造、成矿期次、成矿流体特征和演化、成矿构造环境、成矿模型与区域构造的耦合关系,总结研究找矿标志等显得尤为重要,为深部找矿提供理论依据和找矿方向。
参考文献
陈衍景,富士谷.1992.豫西金矿成矿规律.北京:地震出版社,1-46.
郭保健,李永峰,王志光等.2005.熊耳山Au-Ag-Pb-Mo矿集区成矿模式与找矿方向.地质与勘探,41(5):43-47.
河南省地质矿产局.1989.河南省区域地质志.北京:地质出版社.
胡受奚,林潜龙,陈泽铭等.1988.华北与华南古板块拼合带地质和成矿.南京:南京大学出版社.
李永峰,毛景文,胡华斌等.2005.豫西公峪金矿床流体包裹体及其He、Ar、S、H、O同位素组成对成矿流体来源的
示踪.岩石学报,21(5):1347-1358.
李永峰,毛景文,胡华斌等.2005.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景.矿床地质,24(3):292-304.
李永峰.2005.豫西熊耳山地区中生代花岗岩类时空演化与钼金矿成矿作用(博士学位论文).北京:中国地质大学(北京).
李永峰.2006.资源危机矿山深部找矿预测研究(博士后工作报告).北京:中国地质大学(北京).
刘光鼎,郝天姚.1995.应用地球物理方法寻找隐伏矿床.地球物理学报,38(6):850-854.
卢欣祥,于在平,冯有利等.2002.东秦岭深源浅成型花岗岩的成矿作用及地质构造背景.矿床地质,21(2):168-178.
王志光,崔亳,徐孟罗等.1997.华北地块南缘地质构造演化与成矿.北京:冶金工业出版社.
残余盆地沉积铜成矿组合——天鹿铜矿
一、地质背景
天鹿铜矿,位于甘肃省肃南裕固族自治县北西直距38km处(图7-1)。属北祁连缝合带中西段北缘。区内主要地层为奥陶纪阴沟群、志留系、第四系,其次为泥盆纪沙流水组、石炭纪臭牛沟组、白垩纪新民堡群、第三纪疏勒河组。
早奥陶世末发生的古浪运动,使北祁连洋盆(优地槽)关闭,晚奥陶世初期,北祁连洋向北消减造成消减带以北地区抬升褶皱,由于下潜洋壳持续对仰冲盘地壳的向下拖曳作用形成志留纪海盆。志留纪末期受祁连运动的影响,阿拉善地块和中祁连古陆块发生碰撞,北祁连山残余盆地彻底关闭。碰撞作用引起的变形在该区表现为具区域规模的志留系复向斜,呈北西-南东向延伸,长达30km,核部为上志留统旱峡群,两翼由中志留统泉脑沟山组及下志留统肮脏沟组组成。枢纽走向130°,北翼产状230°∠60°;南翼产状50°∠70°。天鹿矿区处在向斜的北翼,总体上矿区为一向南西倾的单斜构造。断裂发育,岩浆活动较弱(图10-1)。
图10-1 天鹿铜矿地质图
二、矿床地质
(一)地层
天鹿铜矿区出露的地层比较单一,除大片第四系和零星的石炭纪臭牛沟组外,志留系是本区分布最广,而且是唯一的赋矿层位。其分布从下到上是:
1.志留纪下统肮脏沟组
主要为陆源细碎屑沉积建造,为细碎屑物与泥质沉积物相间产出。下部为绿色—灰色,中厚层状—块状细粒岩屑长石砂岩夹粉砂质板岩、炭质千枚岩;上部为灰绿色千枚岩、紫灰色粉砂质千枚岩夹泥质粉砂岩、粉砂岩、内含⑨号铜矿化体。
2.志留纪中统泉脑沟山组
是在浅海陆棚与滨海交替的环境下沉积的产物。岩性为灰—绿灰色细粒长石岩屑砂岩与紫红色细粒岩屑砂岩相间分布,夹粉砂质板岩与滑塌砾岩。厚大于126m。
3.志留纪上统旱峡组
根据岩石组合特征,分为下亚组和上亚组。
下亚组是在滨海沉积环境下沉积的紫—紫红色铁质粉砂岩、铁质泥质粉砂岩和紫红色粉砂质板岩,厚260m。
上亚组是在潮坪-局限海的环境下沉积的,也有短暂的潮下带。是本区主要的含矿岩组。下部为灰绿色粉砂质板岩、钙质板岩、灰岩、粉砂质灰岩夹粉砂岩、铁质粉砂岩,向上为紫红色铁质粉砂岩与绿灰色泥质粉砂岩互层,单层厚几米至几十米,灰色岩层中普遍发育条带、条纹构造,由粉砂岩条带与泥岩、灰岩条带相间产出,发育透镜状层理、波痕、泥裂、雨痕、冲刷面、粒序层等。岩石为泥质胶结,成分为碎屑石英、斜长石、钙质岩屑、白云母、电气石,有的有火山岩屑、铁质、泥晶方解石等。厚度大于1340m。
旱峡组与泉脑沟山组和肮脏沟组在矿区均以断层相接触。
(二)矿区构造
矿区处在水洞沟—水关沟向斜构造的北翼,矿区为一向南西倾的单斜构造,产状210°~260°∠40°~80°。加里东期的构造变形在矿区内主要是脆性断裂,旱峡组两侧的断裂长约20km,属逆断层性质;矿区的东西向平推断层,使主矿体平移了约1km。
(三)矿层特征
在长8km、宽2.5km范围内,铜矿体分布在宽800~1000m范围内,呈NW-SE展布,全区共有15个含矿层,除了(11)号产于闪长岩脉的内外接触带、⑨号产于肮脏沟组中外,其余13层铜矿化都产于旱峡组上亚组,呈层状产出(图10-2),与地层产状完全一致。顶板为灰色泥质钙屑粉砂岩,底板为紫红铁质钙屑粉砂岩,也有顶底板均为紫红色泥质钙屑粉砂岩,⑨号顶底板为灰绿色千枚岩。
图10-2 天鹿铜矿矿层顺序示意图
在15层矿中,单个矿体长200~6000m,厚0.4~3.46m,个别矿体厚7.62~9.82m,矿体延深比较稳定。其中⑦号铜矿体是主要矿体,具有一定规模,且有代表性,其特征如下:⑦号铜矿体产于旱峡组上亚组灰绿色泥质粉砂岩、灰—深灰色灰岩、粉砂质灰岩的下部,矿层的顶板为灰绿色泥质钙屑粉砂岩、泥质粉砂岩。底板为紫红色铁质钙屑粉砂岩。矿层控制长度6130m,厚度0.3~3.46m,平均厚1.15m、出露高度在海拔3230~3900m。倾向SW,倾角40°~60°。Cu品位为0.21%~2.64%,平均0.84%。该矿体非常稳定,在走向上贯穿全区,它的主体部分在水洞沟—水关沟向斜北翼靠近核部,向斜南翼被F2断层切割缺失。
(四)矿石类型
本区矿石类型有3种:①泥质粉砂岩型斑铜矿矿石;②泥质钙质粉砂岩型斑铜矿矿石;③闪长岩型黄铜矿矿石,该类型只在11号矿体出现。脉石为斜长石、绿泥石、次为方解石、绿帘石、石英、绢云母、钾长石、阳起石、透闪石、磷灰石、锆石、榍石、总量在97%,金属矿物有黄铜矿、黄铁矿、磁铁矿、铜蓝等,总含量不到3%。
前两类矿石是区内的主要类型,而且相似,见后所述。
(五)矿石矿物成分
泥质粉砂岩型斑铜矿矿石和泥质钙质粉砂岩型斑铜矿矿石,脉石体积分数91%~95%左右,主要由粉砂屑石英、长石、钙岩屑、白云母、电气石及泥质组成,其中斜长石体积分数30%~45%,石英10%~25%、钙岩屑14%~45%、白云母3%、电气石少量,泥质胶结物8%~15%。矿石中金属矿物含量占5%~9%左右,以斑铜矿为主,其含量占4%~9%,次为黄铜矿(<1%),还有微量的锌黝铜矿、硫铜银矿、含银斑铜矿、辉铜矿、铜蓝、孔雀石等,还有少量的褐铁矿。其中斑铜矿呈他形粒状,粒度0.01~0.5mm左右;黄铜矿粒度在0.04~0.07mm;辉铜矿粒度0.02~0.03mm,褐铁矿粒度0.01~0.04mm。
斑铜矿:在矿石中多以他形细粒、中细粒集合体出现,呈微细星散状、不规则状、细小斑点团块状顺层理浸染产出。在细小斑点或团块状的斑铜矿中含有密集的微细碎块状浅色斑铜矿包体。主体斑铜矿及浅色斑铜矿电子探针分析见表10-1。表中前6件为主体斑铜矿,成分(wB/%)为:Cu平均60.49%、Fe11.20%、S25.41%、As1.11%、Pb0.38%、Zn0.3%、Ag0.24%、Se0.4%、Ti0.26%及微量Ni、Co、Sb、Te。测算其平均成分式为:
华北古陆西南缘(龙首山—祁连山)成矿系统及成矿构造动力学
表10-1 斑铜矿电子探针分析结果(wB/%)
注:测试单位为中国地质大学(北京)电子探针室,李树岩。
表中后两件为浅色斑铜矿,它的成分(wB/%)平均Cu59.76%、Fe12.46%、S25.13%、Ag0.4%、Sb0.11%、Se0.48%,不含Co、Pb、Te等元素。测算其平均成分式为:
华北古陆西南缘(龙首山—祁连山)成矿系统及成矿构造动力学
黄铜矿:产状有3种,①在中粗粒斑铜矿中呈薄板状叶片、透镜体或纺锤状产出,多见于颗粒边部;②呈独立体产于碳酸盐脉中及边部;③与斑铜矿、锌黝铜矿共生产于碳酸盐细小斑点团块中。电子探针分析结果见表10-2。从中看出3种产状的化学组成十分相近,计算其化学成分式:薄板状叶片黄铜矿(970099-7)为Cu0.99Fe0.99S2;其他两种产状黄铜矿为Cu1.00Fe1.00S2。
表10-2 黄铜矿、锌黝铜矿电子探针分析结果(wB/%)
注:测试单位为中国地质大学(北京)电子探针室,李树岩。
锌黝铜矿:产于矿石中有斑点状碳酸盐脉或团块状产出的部位,在碳酸盐中与黄铜矿或斑铜矿、黄铜矿共生。电子探针分析见表10-2,其成分(wB/%)平均Fe0.72%、Zn7.02%、Sb26.31%、As2.49%,计算其平均成分式为:
华北古陆西南缘(龙首山—祁连山)成矿系统及成矿构造动力学
硫铜银矿:与主体斑铜矿伴生,呈细—中粒不规则状集合体沿层理浸染产出,镜下见与斑铜矿构成不混溶连晶。
孔雀石:与重晶石连生的细脉产出在含钙岩屑粉砂质泥岩中。
(六)矿石结构构造
1.矿石构造
矿石具明显的层理,与粉砂质与泥质组成的脉石呈逐渐过渡关系,形成层理构造,金属矿物基本上均沿层理方向形成各种粒度和形态的浸染状、脉状、斑点团块构造等。
浸染状构造:金属矿物在粉砂质泥岩中呈微细粒的星点状或稀疏浸染状构造;在粉砂岩中呈细—中粒稀疏或密集浸染状构造,浸染的颗粒集合体的大小随原岩中脉石矿物组成的粗细增大而加大,还可形成顺层浸染和不连续定向浸染的条带状或粗晶集合体的不规则浸染状构造。
脉状构造:矿石中有顺层理方向不规则的碳酸盐脉,其中有斑铜矿、黄铜矿、锌黝铜矿组合或黄铜矿、锌黝铜矿组合,或独立黄铜矿呈不规则状集合体产出,形成金属硫化物-碳酸盐组合的脉状构造。
斑点团块状构造:重结晶的碳酸盐矿物呈不规则斑点团块状,大小一般在0.1~1cm左右。金属硫化物中以斑铜矿为主体沿其周边充填交代共同形成不规则的斑点团块构造。
2.矿石结构
他形粒状结构:由于充填交代作用,斑铜矿等金属硫化物晚于周围介质而形成他形晶-中粗粒状结构。
似固溶体出溶结构:黄铜矿呈板状叶片、透镜状或纺锤状出现在斑铜矿中或其集合体的边部形成此种结构。
交代结构:以斑铜矿为主体的金属硫化物多沿脉石矿物间的胶结物充填交代,构成不规则状的交代结构。
似共结结构:碳酸盐脉及其斑点状小团块中,斑铜矿、黄铜矿、锌黝铜矿之间具有似共结边现象,其结晶时间大致相当而形成似共结结构。
(七)矿床地球化学
矿区微量元素含量列于表10-3。
表10-3 微量元素含量表(wB/10-6)
(八)矿床成因
该矿床的铜矿为层状体,产状与围岩一致,一般都产于灰、灰绿色岩层底部,底板为紫红色铁质钙屑粉砂岩,顶板为灰绿色泥质钙屑粉砂岩。物质来源主要为陆源碎屑,铜以化学搬运及粘土吸附形式搬运到海。在旱峡组沉积时,当时该区处于潮坪沉积环境,由于构造运动的升降,出现潮坪与局限海的交替。
原生矿石矿物在形成上分带明显,尤其⑦号主矿体,由下至上为辉铜矿、斑铜矿、黄铜矿、黄铁矿。从矿物共生关系看,有3个成矿期:即原生成矿期(生成辉铜矿-斑铜矿-黄铜矿-黄铁矿)、后期热液成矿期和表生成矿期。前者对矿石有微弱的改造和富集,后者使黄铁矿变为褐铁矿、黄铜矿、斑铜矿、辉铜矿氧化为孔雀石和铜蓝。
总之,天鹿铜矿为海相沉积型砂岩铜矿床。
豫西方山地区铝土矿地质特征及找矿方向
仇建军1,2 秦明1,2 方荣2
(1.中国地质大学(北京);2.河南省有色金属地质矿产局第三地质大队)
豫西是我国重要的铝土矿集中产地,石炭系含铝岩系分布在豫西的郑州—许昌—平顶山—三门峡—焦作所构成的近似三角形的区域内,出露面积约2000km2。铝土矿床属赋存于寒武系—奥陶系碳酸盐岩地层古岩溶风化剥蚀面上的一水硬铝石沉积型铝土矿,成矿时代为晚石炭纪本溪期。目前已发现铝土矿床(点)1000多处(戴耕等,2000),主要分布在隆起区四周(图略),如中条山-太行山隆起区南侧的焦作-济源成矿区,中条隆起区、岱眉寨隆起区东侧的陕县-渑池-新安成矿区,以及嵩山-箕山隆起区周围的嵩箕成矿区、汝阳-汝州-宝丰成矿区。本研究区指河南省西部方山地区,位于嵩山-箕山隆起区周围的嵩箕成矿区东南侧,研究区范围属禹州西部,北起白沙水库—无梁镇一线,南至郏县北,西起方山—黄道一线,东止无梁镇—安良镇一线。研究区内已发现铝土矿床(点)20余处,其中中型铝土矿床3处,显示该研究区尤其是中深部具有较大的铝土找矿前景。笔者通过对研究区铝土矿床的区域成矿地质背景、含矿岩系特征和典型矿床特征等方面进行分析,指出下一步该区的找矿方向。
一、区域地质概况
本区大地构造位置属华北地台的Ⅱ级构造单元豫淮台褶带西段,北临山西台北斜,南靠秦岭褶皱带。该区构造位于中朝准地台西南部,华北中断坳和嵩箕中台隆交界的部位。
本区属华北地层豫西分区嵩箕小区地层。区域出露地层主要有震旦系、寒武系、下-中奥陶统、上石炭统、二叠系及第四系。上石炭统本溪组是本区铝(粘)土矿的含矿岩系,含矿岩系与下伏的碳酸盐岩地层呈平行不整合接触,与典型的产于碳酸盐岩古侵蚀面之上的沉积型铝土矿床的赋存特征一致。
区内褶皱平阔平缓,断裂发育,成组平行展布。主要褶皱轴向为NWW-SEE,自北而南依次发育有白沙向斜、许禹背斜和景家洼向斜;断裂发育有两组,主要为方向大体与褶皱轴压应力方向一致的NE-SW向断层,如箕山、杏山坡、官山岩、祖师庙、尚沟及下白玉等断层,其次为与褶皱轴近于平行的NW-SE向的阶梯状北降南升正断层,包括有庄沟、玻璃沟、彭沟、井沟、殷村、梁北、峰山、富山及黄道镇-王英沟等断层。
本区成矿区划属于嵩箕成矿区登封-新密-禹州铝土矿成矿带东段,包含有方山-鸠山、磨街和神后-新峰及黄道等4个成矿亚带。区内已发现铝土矿床(点)达20余处,其中,包括有方山铝土矿床及磨街、鸠山、黄道等铝土矿点。
二、矿床地质特征
本区代表性矿床为方山铝土矿床,为河南冶金地质三队(河南省有色金属地质矿产局第三地质大队前身)于1978~1981年通过3年的勘探工作而探明的中型铝土矿床,探明铝土矿矿石量800多万吨,矿床平均品位:Al2O363.56%~68.14%,A/S为6.14~7.66;探明富钾铝土矿矿石量2000多万吨,伴生TiO2总资源量近30万t,伴生Ga金属量近800t。下面以方山铝土矿床为例,简述本区的铝土矿床地质特征。
(一)含矿岩系特征
1.含矿岩系地质特征
方山地区铝土矿床含矿岩系赋存于上石炭统本溪组,下与中奥陶统马家沟组白云质灰岩呈平行不整合接触,局部呈角度不整合接触,上与上石炭统太原组呈假整合接触。本溪组自下而上大体分3个岩性段:下部以富铁为特征,呈黄褐、紫红、浅黄等杂色铁质粘土岩,局部地段含铁较高,形成赤铁矿、褐铁矿,矿体受下伏奥陶系古风化面影响呈似层状、透镜状、鸡窝状,分布不规则,俗称“山西式”铁矿,其上部为铁质粘土岩,在氧化带以下多含星散状和结核状黄铁矿,局部含硫高时可达工业品位,焦作、济源、新安、渑池的多处硫铁矿即开采该层位。中部以富铝为特征,为铝土矿的主要层位,主要为深灰—灰色铝土矿、高铝及硬质粘土矿、铁质粘土等组成,层位分布稳定。上部以富碳质及陆源碎屑为特征,一般由碳质粘土岩、铁质粘土岩、粉砂质粘土岩高岭土矿及少量的石英砂岩组成,顶部多见煤层。
本溪组在区内岩性变化不大,但由于受古地形影响厚度在小范围内有明显差异,薄者1~2m,厚者110m。
2.含矿岩系的放射性特征
方山铝土矿床的放射性伽马测量结果显示,该地区铝土矿含矿岩系表现为低强度放射性异常,其伽马强度为:铝土矿体内正常值为100γ,最大值为192γ,而底板奥陶系灰岩平均强度为30γ,顶板二叠系石英砂岩平均强度为20γ;钻孔的岩心正常场为25γ,矿心部位极大值为34γ,顶底板强度值分选明显。
3.矿体地质特征
本区铝土矿均为一水硬铝石型沉积矿床。铝土矿赋存在本溪组中部,层位单一。矿体常呈似层状、透镜状、漏斗状断续产出,有时可互相连接,严格受区内褶皱构造和基底古岩溶地形的控制,或作长条形延伸,或近等轴状产出,古地形较平坦者,矿体呈似层状;古地形低洼处,矿体呈透镜状。
矿体产状与上覆围岩基本一致,矿体一般倾角较缓,为25°左右,古岩溶斗处局部较陡。由于古岩溶地形的控制,不同矿体、不同部位产状有差异,总的规律是矿体底板产状变化较大,顶板比较稳定。有时受古岩溶地形的影响,矿体明显向中心倾斜,形成盆状,“矿盆”里的矿层倾角随着古岩溶侵蚀面或古凹地的原始倾斜陡缓而定。
据研究显示,矿体与围岩存在有两种接触关系。其一为突变接触关系,肉眼很易区分矿体与围岩的界线,此种情况下一般矿石质量较好,其围岩为燧石结核灰岩、碳质页岩、粘土质页岩等。其二为渐变过渡接触关系,肉眼很难区分矿体与围岩的界线,需经化学分析才能区分,矿石质量略差,一般围岩为硬质粘土。矿体中偶见夹层,夹层基本上全为硬质粘土,少量为粘土页岩,呈透镜状产出。
矿体规模受古侵蚀面影响,矿体长度一般为68~400m,宽度一般为36~340m;矿体厚度一般随着含矿岩系厚度变化或受古地形而变化,古侵蚀面隆起部位的厚度变薄或尖灭,最薄处0~0.5m,最厚处可达57.95m(方山中型铝土矿床的8号矿体),位于古侵蚀面低洼部位。
(二)矿石特征
1.矿石矿物成分及赋存状态
据差热分析、X光验证和镜下岩矿鉴定结果,本区铝土矿石的矿物成分主要为一水硬铝石,其次有三水铝石、勃姆石、高岭石、铁质矿物、金红石、锐钛矿、榍石、绢云母、水云母、白云母等。
(1)一水硬铝石:为组成本区铝土矿的主要有益成分,含量70%~98%,颗粒极细,一般0.01~0.1mm,微晶质或隐晶质粒状、他形粒状,其集合体常呈鲕粒、豆粒、凝块或碎屑,也可呈胶结物形式出现,组成砾石时颗粒粗于胶结物。热谱曲线特征,在500℃左右,迅速脱水失重,550℃即终止,如图1和图2所示。
图1 一水硬铝石热谱曲线图
图2 一水硬铝石和少量三水铝石热谱曲线图
一水硬铝石除原生者外,尚有后生形成的,表现为后生的一水硬铝石呈脉状和不规则状集合体分布在铝土矿中,或者后生的一水硬铝石生长在由菱铁矿形成的褐铁矿流失孔中。
(2)高岭石:在铝土矿中含量不高,分布也不均匀,最高含量约20%,多呈隐晶质,少数为显微晶质,其粒度为0.005~0.03mm,呈鳞片状或聚集体或呈胶结物出现,也充填于蜂窝孔中,从中取出的黄白色粉状高岭石的热谱曲线如图3所示。
图3 充填在蜂窝孔中高岭石的热谱曲线图
在镜下常见高岭石被水铝氧石交代,交代高岭石的水铝氧石又被一水硬铝石。
(3)绢云母、白云母、水云母等:在铝土矿中含量极微,但在硬质粘土和粘土页岩中含量很高。在铝土矿中分布不均匀,局部呈团块鳞片状集合体,多见于胶结物中。热谱曲特征从340℃缓慢脱水失重,一直到800℃才徐徐终止,没有急剧失重的特征,它表现为绢云母和少量的一水硬铝石、三水铝石的特征。
(4)勃母铝石:系镜下定名,分布不均,大多不及10%,集中时达98%,颗粒较小,一般小于0.01mm,大者不超过0.015mm,见于砾石、鲕粒的环带和核心,胶结物中也可见到。
(5)含铁矿物:以褐铁矿、黄铁矿、菱铁矿等形式出现,分布不均,呈结核状、团块状、薄膜状、不规则细脉状沿裂隙充填,集中时可达稠密浸染状,集中处主要见于铝土矿层下部。有的褐铁矿空洞呈菱形,显然是菱铁矿形成。
其他矿物尚有三水铝石、金红石、榍石、斜长石、石英、玉髓等,因含量极微,颗粒极细,不再一一叙述。
2.矿石的结构构造及自然、工业类型
本区矿石结构按照矿物的形态大小和空间分布,分为胶状和粒状结构。
矿石构造根据矿物集合体的形态大小和空间分布特征为基础,主要可分为以下几种:
(1)砾状构造:一般见于矿体的中上部,滚圆度较好,多呈扁平状,其扁平面与层面平行,表面光滑,常附有粘土和铁质薄膜。砾石大小不等,分布不均,砾径小者0.3~0.8mm,一般为1~3mm,个别大者可达15cm。有时大砾石中包有小砾石和鲕粒的现象。砾石多者可占70%以上,少者呈稀疏星点状、条带状分布。
砾石中矿物成分以一水硬铝石为主,其次尚有铁质和粘土等。一水硬铝石粒度较胶结物中的粗大,铁质也较胶结物中的高。
(2)鲕状构造:多见于矿层中下部,鲕粒均呈扁平状,扁平面沿层面平行分布,外壳亦有粘土和铁质薄膜包裹,鲕粒内部多做同心环状构造,其中心多由水铝石、勃姆铝石组成,个别为铁质、锐钛矿。由中心向外往往粘土质成分有所增加。鲕粒小者0.2mm,一般0.5~0.8mm,大者可达4mm。鲕粒分布极不均匀,集中时矿石几乎全由其组成。有时呈浸染状或与砾石混杂呈鲕粒状构造。有时还可见后生鲕粒。
(3)蜂窝状-多孔状构造:以矿层中部为多,为本区铝土矿床Al2O3含量最高的矿石,但有时含铁亦高,蜂窝形态不规则,常呈圆形和椭圆形,也有呈菱形者。蜂窝中有时有黄白色粉末———高岭石充填,蜂窝壁及壁之间周围常有褐铁矿及铁染现象,因此认为蜂窝的形成系黄铁矿、菱铁矿等金属矿物流失所致。
(4)致密块状构造:以矿层下部为多,在本区属低品位矿石,SiO2含量较高,多由水铝石组成,并有泥质混杂,有时含少量的小砾或鲕粒,具半贝壳状或粗糙状断口。
矿石自然类型属于一水硬铝石型铝矿,工业类型属于低铁低硫型铝土矿。
3.矿石的化学成分及其变化特征
(1)矿石的主要化学成分,详见表1。
表1 铝土矿化学成分统计表
①组合分析资料;②3个组合全分析资料。
从差热分析、X光验证和显微镜下鉴定与化学分析结果比较,Al2O3主要来源于一水硬铝石。Fe2O3是黄铁矿、褐铁矿供给,SiO2是高岭石、石英、玉髓等矿物中的总量,Na2O、K2O是水云母、白云母、绢云母和少量的斜长石及一些粘土矿物对钾、钠离子的吸附总和,CaO、MgO是由碳酸盐提供,TiO2来源于金红石和锐钛矿。Ga未见单矿物,可能是Al的类质同象混入物。
(2)在垂向上存在某些规律性的变化:Al2O3、TiO2和Ga有由下而上逐渐增高的趋势,互呈明显的正相关关系;Fe2O3、SiO2和K2O自下而上逐有降低,并且与Al2O3、TiO2呈明显的负相关关系,尤其是与TiO2的负相关关系更为明显,不仅总的趋势如此,在每个具体点上也毫不例外。
(3)在水平方向上Al2O3和Al2O3/SiO2总的有从露天到深部逐有降低,但在局部上有所变化。
(4)矿体厚度与品位的关系:总的呈正相关关系,厚度大时品位也高,但有例外,如果矿体虽厚但其中夹石较多时品位就不尽然。
(5)Al2O3/SiO2与品位的关系:Al2O3/SiO2与Al2O3、TiO2是天然的正相关关系,与SiO2呈绝对的负相关关系,但如有Fe2O3干扰亦可出现反常现象,即Al2O3并不很高时,也可出现高Al2O3/SiO2值。
(6)Al2O3与Ga的关系:Ga与Al2O3呈明显的正相关关系,Al2O3高Ga也高,反之亦然。方山大型铝土矿床全区铝土矿石中Ga的加权平均品位为0.0097%(组合样平均),已达铝土石中伴生Ga的工业要求。
(7)Fe2O3的分布特征:在剖面上Fe2O3总的从上而下逐渐增高,矿体的局部见有例外;Fe2O3高低与矿体厚度似有正相关关系。
三、区域地质发展史分析
综观方山地区沉积建造和岩层接触关系及古生物化石特征等,结合前人资料分析,本区的区域地质发展史可分析如下:
(1)本区前震旦系属地槽型建造,构成本区的基底,震旦纪时本区抬升,直至震旦纪末期始有薄层砂岩类碎屑沉积,晚期气候寒冷冰碛砾石的出现是其明证。
(2)寒武纪时本区下沉为海洋,且气候温暖,生物繁盛,沉积了含三叶虫的厚大碳酸盐岩建造,末期地壳又上升出海平面,直至奥陶纪中期始有白云岩、石灰岩的沉积。
(3)中奥陶世末地壳回升,海水退却,本区长期遭受侵蚀,不仅缺失上奥陶统、志留系、泥盆系、下石炭统,就是中奥陶统也遭受了不同程度的侵蚀,有的地方还见有卡斯特溶洞溶斗的出现。温暖潮湿的气候,有利于风化作用,特别是红土化作用的加速,加上长期的侵蚀,给后来铝土矿的生成和物质来源提供了有利的环境和条件(图4)。
图4 豫西地区上石炭世古构造示意图(据《河南省铝土矿成地质条件及找矿方向研究报告》)
(4)石炭纪晚期,地壳小幅度升降频繁,形成海陆交替相的灰岩、铁铝岩石、砂岩、页岩和煤建造。到石炭纪晚期末,海水全部退出本区,地壳进一步上升成大陆湖泊,此时气候温和,雨量充足,植物茂盛,形成了二叠系含煤建造。
(5)二叠纪末,本区地壳上升海水一直未达到本区,又遭受长期侵蚀,缺失三叠系、侏罗系、白垩系,燕山运动使本区发生褶皱断裂,奠定了本区构造雏形,前述背斜向斜断裂构造均是这个时期形成的。
四、找矿方向
20世纪60年代以来,国家对豫西包括禹县西部,投入相当大的人力物力,对该区的铝、粘土矿资源开展了很多地质工作,相继发现铝土矿床(点)20余处(包括禹县的方山大型铝土矿床等),经过数十年的探矿,浅中部(300m以浅)铝土矿体已基本勘探完毕,找矿难度越来越大。今后一段时期,对该区的铝土矿找矿工作应该由寻找地表及浅中部氧化矿体,转为寻找地下隐伏的原生铝土矿体。具体到豫西方山地区的铝土矿找矿,应注意以下问题:
(1)根据古地理特征,寻找古陆或古高地的洼地或沉积盆地,进而寻找铝土矿含矿岩系即上石炭统本溪组。
(2)重视构造和岩溶控矿的作用,岩溶的发育对铝土矿有着直接的控制作用,而岩溶的发生和发展大部分与一定方向的基底断裂有关,因此,要不断总结现有成矿洼斗的分布规律,指导深部勘探工作。
(3)利用地球物理方法间接找矿,可提高找效率,节约找矿成本。如利用磁法测量可确定古岩溶侵蚀风化面的位置,利用激发极化法可以圈出铝土矿(化)体的大致位置及第四系的埋深。以瞬变电磁测深为主的多方法(参数)测深方法试验,结合视电阻率测深、超长波探测、音频大地电磁测深、视电阻率剖面、放射性等方法,定位基底碳酸盐岩上的岩溶洼斗位置。根据放射性差异,可使用放射性伽马测量方法,其数据可作为鉴别矿石与非矿岩石的参考。
(4)对已勘探和开发利用铝土矿床周边的深部远景区进行深部找矿,如方山铝土矿区东侧的白沙向斜核部,根据向斜构造的对称分布特征,含铝岩系向东及南部仍有延伸;景家洼向斜两翼出露地层为二叠系,其他地段为第四系覆盖,该向斜两翼的深部及向斜核部含铝岩系应有延伸,因此从区域上看,该区从方山铝土矿床向东仍有延伸,在白沙向斜、许禹背斜西段,景家洼向斜的核部和两翼往深部,铝土矿床中深部找矿远景很大。
参考文献
吴国炎.1997.华北铝土矿的物质来源及成矿模式探讨.河南地质,(3):161-166.
杨振军,刘国范,马庚杰.2005.豫西铝土矿成矿地质条件及找矿前景.矿产与地质,6(3):280-285.
叶伟才,李小雷,金祖权等.2002.豫西铝土矿的地质特征及其找矿方向.河南建材,(4):15-17.
罗铭久,黎世美,卢欣祥.2000.河南省主要矿产的成矿作用及矿床成矿系列.北京:地质出版社.
吴国炎,姚公一,王志光.1996.河南铝土矿床.北京:冶金出版社.
朱永红,朱成林.2007.遵义铝土矿(带)找矿模式及远景预测.地质与勘探,43(5):23-28.
- 随机文章